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structures. For this comparison we have reported in 
Table 5 the ,Y values of several structures. We note 
that the level of distortion of DIF is greater only than 
naphthalene; while that of DINO is near to anthracene 
and pyrene. 

Table 5. Comparison o f  the level of  significance o f  the 
distortion among different structures 

Structure '~obs ~ (0.01) .-)-~ 

DIF 1.142 1.083 1.7 
DINO 1.149 1.042 3.5 
S s 1.154 1-015 10.3 
Anthracene 1.092 1.023 4.0 
Naphthalene 1.079 1.062 1.3 
Pyrene 1.184 1.047 3.9 
Ovalene 1.141 1.021 6.7 
1,2, 3-trichlorobenzene 1.070 I- 038 1.8 
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Abstract 

It is shown that the real part of the root of the 
dispersion equation for the permitted modes of pro- 
pagation is always positive for two-beam Laue and 
Bragg reflections at the exact diffraction position. 
Based on this, a general rule is proposed to determine 
the number, Np, of permitted modes of propagation for 
N-beam dynamical diffraction, where no extremely 
asymmetric reflections are involved. In other words, for 
both a- and n-polarized wavefields, 

Np= 2 ( N -  Naragg), 

where NBrag$ is the number of Bragg reflections 
involved. This conclusion is supported by calculations 
for three-, four-, six- and eight-beam cases. 

I. Introduction 

In the dynamical theory of diffraction, the dispersion 
surfaces, amplitude ratios of wavefields and absorption 
coefficients are determined from the equation of 

0567-7394/79/040543-05501.00 

dispersion. Each dispersion surface specifies a type of 
wave propagating through a crystal, the so-called mode 
of propagation. The wavefield and absorption 
coefficient are associated with their corresponding 
mode of propagation. The number of modes equals the 
number of existing wavefields. Other quantities such as 
the excitation of mode and diffracted intensities are 
obtained by combining the number of wavefields with 
the appropriate boundary conditions. Therefore, it is 
necessary to take the number of wavefields, namely, the 
number of permitted modes into account in dynamical 
calculations and only then comparison of the cal- 
culations with experiments can be made. 

It has been well established that there are four 
permitted modes of propagation for two-beam (Laue) 
transmission of X-rays if both e- and n-polarized wave- 
fields are considered. However, according to Kohler 
(1933) and Authier (1962), there are only two modes 
allowed in two-beam symmetric Bragg reflection for a 
thick crystal, i.e. #t > 10, where g and t are the linear 
absorption coefficient and the crystal thickness, respec- 
tively. These two modes, which have the direction of 
energy flow towards the crystal, are associated with 
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negative Riemann sheets which give positive absorption 
coefficients (Kato, Katagawa & Saka, 1971). Due to 
these positive absorption coefficients, the wavefield 
amplitudes are always attenuated within the crystal. 
The requirement of the conservation of total energy is 
hence fulfilled. For extremely asymmetric reflection, for 
which the angle between the incident (or diffracted) 
beam and the crystal surface is less than 2 ° , more than 
two modes are permitted (Kishino & Kohra, 1971; 
Bedynska, 1974). For N-beam (N > 2) Borrmann 
diffraction, there are 2N permitted modes since only 
transmissions are involved and the characteristics of 
two-beam (Laue) transmission can be applied. This has 
been reported by many authors including Ewald & 
H+no (1968); H+no & Ewald (1968); Uebach & 
Hildebrandt (1969); Huang, Tillinger & Post (1973); 
Umeno & Hildebrandt (1975); Post, Chang & Huang 
(1977). If Bragg reflections are introduced in N-beam 
diffraction, the determination of the number of permit- 
ted modes is complicated. Some modes which have 
negative absorption coefficients should not be con- 
sidered as permitted modes. In this paper, by con- 
sidering some characteristics of two-beam Bragg 
reflection and Laue transmission, we propose a general 
rule to determine the number of permitted modes for N- 
beam dynamical diffraction. 

II. Theoretical considerations 

The number of dispersion sheets is a constant quantity 
which does not vary as the crystal setting changes. The 
corresponding number of modes of propagation is then 
the same throughout all crystal settings. For simplicity, 
let us consider the number of modes at the exact 
diffracting position for a singly-polarized wavefield. 

(A) Two-beam cases 

The equation of dispersion for a singly polarized 
wavefield can be written in the following form: 

y2 + KXo(1/7o + l/?6)/2y 

+ K2(XZo--CZx~L~)/(4?oY~)=O, (1) 

where y (= Kte), the accommodation (Ewald, 1917), is 
the distance between the Laue point and the tie point on 
the corresponding dispersion surface. Positive y corres- 
ponds to the direction towards the interior of the 
crystal. 70 and y~ are the direction cosines of the direct 
reflection 0 and the diffraction G with respect to the 
inward surface normal, n e, of the crystal, namely, 

70 = Ko- ne and Y~7 = KG. he. (2) 

K o and K6 are the unit vectors of the direct and 
diffracted beams in vacuum. K has the magnitude 1/2, 
where 2 is the wavelength of X-rays in vacuum. C is the 
polarization factor with - 1 < C < 1. Xo and XG are the 
complex dielectric susceptibilities for O and G 

reflections, respectively. Because of the difference in the 
geometric relationship between the incident and diffrac- 
ted beams with respect to the crystal surface of Laue 
transmission and Bragg reflection, the two cases are 
considered separately. 

(i) Laue case (Yo > 0, yo > 0). Referring to Kato 
(1974, p. 241), the solutions of (1) are 

yr = Re (y) = / yr(1) = --K~o/(2Yo) 
t yr(2) 

+ [w ¥ (w 2 + W2)V21/(27~) (3) 

and 

f yl(l)  
y l =  Im0') = { =--KXto(l/Yo + 1/7~)/4 

ty'(2) 
¥ (wv + WV) / (w  z + W2)V2/(27~), (4) 

where w; v and W; V are the real and imaginary parts 
of KXo(I -- ?J7o)/2 and KC(x~ X_~)l/2(? o y~)u2, respec- 
tively. Re(y) and Im (y) are the real and imaginary 
parts of the argument (y). The linear absorption 
coefficients which are proportional to fl  are 

lye(l) u(1) = - 4 ~  . (5) 
#(2) [y1(2) 

Since X~ < 0 and Xto > 0 (Kato, 1974, p. 182), both y" 
and a are positive. As stated before, permitted modes 
always have positive absorption coefficients. Both 
modes with positive a and y" are permitted. This corres- 
ponds to the physical situation that the dispersion 
sheets always lie below the Laue point at the exact 
diffracting position for transmission cases and each 
sheet has a Poynting vector perpendicular to it towards 
the crystal side. For this case, positive p always 
associates with positive yr. Therefore, the number of 
permitted modes equals the number of positive yr at the 
exact two-beam diffracting position. 

(ii) Bragg case (?o > 0, 7~ < 0). Equation (1) still 
holds for Bragg cases. At the exact two-beam diffrac- 
tion position, the solutions, yr and yi, are 

Yr(l) l=- -Kx~/ (27o)  + [w + (w2 -- W2) l/2]/(21y~l), 
yr(2) J 

3d(1)' 
y'(2) 

(6) 

= --K~o/(27o) 

+ iv +_ ( w v -  w v ) / ( w  ~ -  w~)'/~]/(21r~l). (7) 

The corresponding absorption coefficients, #, have the 
same expression as (5). It can be easily shown that 
y (1 )  > 0 and y'(2) < 0; #(1) > 0 and g(2) < 0 (Kato, 
Katagawa & Saka, 1971; Kato, 1974, p. 343). The 
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detailed relation between the sign of absorption 
coefficient and the dispersion surfaces at other angular 
settings for two-beam Bragg reflection has been given 
by Chang (1978). Since no waves arrive from the 
crystal side, the modes associated with negative 
absorption coefficients are not allowed in Bragg 
reflection. The only permitted mode corresponds to 
yr(1) which is positive. Again positive # associates with 
positive yr. The number of permitted modes is equal to 
the number of positive yr. 

Actually, the number of positive yr can be easily 
determined based on Descartes' rule of signs or the 
properties of the eigenvalue equation. Since the location 
of tie points only depends on the real part y~ (if the 
approximation of small imaginary part is employed), 
the dispersion equation can be expressed, in terms of yr, 
in a matrix form as 

(B) Three-beam and N-beam (N > 3) cases 

The equation of dispersion for a general three-beam 
diffraction, O, G and H, can be written as 

I 
k2--k~ Clk2X_a C2k~x_ H [ 

C3k2axa k 2 - k  2 c, kgx _,,l= 0, (9) 
I 

C, k 2 Zn Ct, k 2 Zu_G k2 - k2 [ 

where C~, C2,.. . ,  C6 are the polar izat ion factors. 
Referring to Fig. 1, k o, kG and k n, starting from the tie 
point, T, are the wave vectors of 0,  G and H reflections 
inside the crystal, k~, kb and k~ are the wave vectors 
from the Lorentz point, Lo, to the corresponding 
reciprocal-lattice points, 0, G and H, of magnitude k. 
The relations among k, k o, kG, k n, to first order in Ak 
can be written as 

I K ffo/2 - Yr To C f f_J2 I 
=0.  (8) 

C)~a/2 K~o/2 -- Yr To 

As the susceptibility of the incident reflection is always 
greater than the diffracted one, i.e. IX~l > IX~F, the 
signs of the eigenvalues yr are independent of the off- 
diagonal elements of the secular determinant of (8). By 
ignoring ~ and Z ~ ,  (8) becomes 

(,yr-- arl)(,y r -  a;) = O, 

where 

k 2 -- k2o ~_ --2K(K o. Ak), 

k 2 - k 2 ~ -2K(KG.Ak), (10) 

k 2 - -  k 2 _~ --2K(K n. Ak). 

Ak is a function of K such that 

Ak = --(AK + K~ ene) , 

where 

A K  = LaLo. (1 1) 

a; = --K)(o/(27 o) 

and 

a; = -K~o/(27~). 

Evidently, the signs of yr depend solely on 70 and 7o. 
The number of permitted modes is then two for Laue 
(70 > 0, 7G > 0) and one for Bragg (70 > 0, )'c < 0). 

From above considerations, the following conclusion 
can be made; at the exact diffraction point, permitted 
modes with positive absorption always have positive 
values of yr. This is consistent with the fact that, for 
both Laue and Bragg reflections at the exact two-beam 
diffracting point, the corresponding tie-points are 
always situated below the Lane point so that the 
directions of energy flow are towards the crystal side. 
However, it should be noted that the permitted modes 
may have negative y" at some other settings. It is for 
this reason that the situation at the exact diffracting 
position is considered, besides its simplicity in math- 
ematics. At this particular setting, the number of 
permitted modes is equal to the number of positive y of 
the dispersion equation. This conclusion can be treated 
as a criterion for determining the number of permitted 
modes for N-beam diffractions at the exact N-beam 
diffraction position. 

Crystal Surface 

I 
I 
! 

^e~ Lo KOen 

0 

H 
Fig. 1. Geometr ic  relations between the wave vectors and 

reciprocal-lattice points for a three-beam diffraction case in 
reciprocal space. La,  Lo, and T are the Laue, Lorentz  and tie 
points, respectively. The  distance LaLo  has been exaggerated in 
comparison with the wave vectors. 
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Using (10) and (11) and neglecting the off-diagonal 
terms and the imaginary  parts ,  (9) becomes 

where 

and 

(yr-- arO(yr- a'~)(yr- a'~) = O, (12) 

ar~ = - K  )(o/ ( 2 Yo), 

a~ = -K~(o/(2y6) ,  

ag = -K;(~/ (2Yn) .  

For  three-beam Bor rmann  reflection (7o > 0, 7G > 0, 
7U > 0), there are three permitted modes because of  
three positive yr. For  three-beam B r a g g - B r a g g  (70 > 0, 

where 

a~=--Kzro/(27j)  for j =  1 , 2 , . . . , N .  

It is clear that  yr are always negative for Bragg 
reflections since the corresponding direction cosines are 
negative. The number  of  permitted modes is then equal 
to N - N s r a s g ,  where NBras s is the number  of  Bragg 
reflections involved. 

More  rigorously,  the exact  eigenvalues, yr and fi ,  of  
(9) (including their signs) can be determined by 
numerical  calculation. The calculation procedure  is 
similar to that  given by Post,  Chang  & H u a n g  (1977) 
for N-beam Bor rmann  diffraction, where polarization, 
absorpt ion and crystal lographic  phases were taken into 
account .  The following cases were subjected to the 

76 < 0, ?u < 0) and three-beam B r a g g - L a u e  (7o > 0, 76 calculation: 
> 0, 7u < 0), there are one and two permitted modes,  
respectively. 

Similarly, (12) can be generalized for N-beam ( N  > 
3) diffraction as 

(yr__ arl)(yr__ arE)... (yr _ arj)... 

(,yr r 
- -  a N _  , ) ( J  - -  a ~ )  = O,  (13) 

(i) three-beam germanium 000, 111, 
111, (ii) three-beam Ge 000, 111 ,220 ,  (iii) four-beam 

. . . .  

G_e_000_, 004, 113, 111, (iv) six-beam Ge 000, 202, 022, 
422, 242, 440, (v) six-beam G a A s  000, 002, 224, 222, 
4~,2, 4J,0 and (vi) eight-beam G a A s  000, 002, 204, 404, 
602, 600, 402, 202. Cu Ka 1 radiat ion was used. In 
Table 1, the type of  reflection, linear absorpt ion 
coefficients, #, the roots,  f ,  and the number  of  per- 

Table 1. Calculated results for  the accommodations, yr, the linear absorption coefficients, lu, the type o f  diffraction 
and the number o f  permitted modes, Np, for  3, 4, 6, and 8-beam cases 

Case N-beam Naragg Bragg Laue 

Ge 000 
111 3 1 111" l i l  
i i l  

Ge 000 111" 
111 3 2 220 
220 

Ge 000 004* i 11 
004 i i3 

_ _  

113 4 2 
i i l  

Ge 000 202" 242 
20} 42} 0}2 
4}} 440 
440 6 3 
242 
0:~2 

GaAs 000 002* 4zi0 
002 2}4 2}} 
224 442 
4z~2 6 3 
440 
222 

GaAs 000 002* 600 
002 204 402 
204 404 20i 
404 602 8 4 602 
600 
40} 
20} 

-310.32 
--263.70 

108.86 

-426.97 
-382.62 
-132.35 

-412.44 
-376.78 

-89.18 
-67.95 

--371.71 
-252.48 
-157.20 
--111.86 

-40.37 
-31.52 

-447.07 
-312.47 
-265.85 
-172.65 

-84.86 
-79.04 

-382.47 
--361.41 
-351.00 
--310.43 

-60.85 
-58.68 
-36.78 
-34-22 

y' (mm -t) # (mm -l) Np 

132.35 -100.19 382.41 
382.62 -67.88 130.24 2 x (3 - 1)=4 
426.97 233.69 155.40 

-108.86 -155.40 -233.69 
263.70 --130.24 67.88 2 x (3 - 2)=2 
310.32 -382.41 100.19 

67.95 -158.57 9.01 
89.18 -134.55 20.90 2 x (4 - 2)=4 

376.78 -20.90 134.55 
412.44 -9.01 158.57 

31.52 -153.18 0.37 
40.37 -77.04 1.34 

111.86 -27.60 8.45 2 x (6 - 3)= 6 157.20 -8.45 27.60 
252.48 - 1.34 77.04 
371.71 -0.37 153.18 

79.04 -259.65 24.18 
84.86 -144.38 29.29 

172.65 -106.77 35.07 2 x ( 6 - 3 ) = 6  265.85 -35.07 106.77 
312.47 --29.29 144.38 
447.07 -24.18 259.65 

34.22 -202.36 5.10 
36.78 -168.79 6.42 
58.68 -174.65 16.25 
60.85 -125.46 19.52 2 x ( 8 - 4 ) = 8  310.43 -19.52 125.46 

351-00 -16.25 174.65 
361.41 -6.42 168-79 
382.47 -5.10 202.36 

* Indicates the reflection is symmetric. 
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mitted modes N o, are listed. The permitted modes are 
those with positive g or positive yr. Clearly, the number 
of permitted modes satisfies the relation, N o = 2(N -- 
NB, ~g). 

III. Discussion and conclusion 

With the above considerations, it has been shown that 
at the exact N-beam diffraction position yr and g 
always have the same sign. As mentioned above, the 
absorption coefficient of a permitted mode must be 
positive. The permitted mode should always have 
positive yr associated with it. For both o- and zr- 
polarized wavefields, the number of modes having 
negative absorption coefficients, according to (13) and 
Table 1, is equal to 2NBragg. The number of permitted 
modes is then the number of the rest of the modes, i.e. 
2N- -  2NBrag ~. In other words, it is twice the number of 
transmitted beams, including the incident one. This is 
exactly consistent with the characteristics of two-beam 
cases discussed above. Apparently, this relation also 
holds for N-beam Borrmann diffraction, in which no 
Bragg reflections are involved. The number of permit- 
ted modes equals the number of total possible modes, 
2N. 

Although this relation is quite general, it is not 
applicable to those cases which involve extremely 
asymmetric reflections. For such cases, higher-order 
terms of (Ak) need to be considered. This leads to more 
permitted modes since the equation of dispersion has 
the form of a high-order polynomial. Besides, extra 
modes may be introduced by some related physical 
phenomenon, such as the specular reflection of X-rays 
from the crystal surface where the glancing angle of the 
incident beam is less than 1 or 2 ° (Kishino & Kohra, 
1971). 

Nevertheless, without extremely asymmetric reflec- 
tion in N-beam dynamical diffraction, the relation Np = 
2 ( N -  NBragg ) holds as a general rule for determining 
the number of permitted modes of wave propagation. 
As stated before, the diffracted intensities can be 
calculated by solving the equations obtaining from the 
boundary conditions for these N o wavefields. Based on 
this, the interpretation of Aufhellung (Wagner, 1923; 
also quoted by Mayer, 1928) and Umwegangregung 
(Renninger, 1937) effects in terms of the dynamical 
theory of diffraction is possible. 
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Abstract 

The number of possible combinations of parallel four- 
membered rings, of the same kind, forming an eight- 
membered ring is systematically derived by a different 
method from that of Smith & Rinaldi [Mineral. Mag. 
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(1962). 33, 202-211]. 17 different configurations (in- 
eluding six enantiomorphic) in the UUDD ring (U and 
D represent upward- and downward-pointing tetra- 
hedra respectively), four different ones (two enantio- 
morphic) in the UDUD ring, and sixteen different ones 
(seven enantiomorphie) in the UUDD ring are shown 
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